Sains Malaysiana 53(6)(2024): 1441-1461
http://doi.org/10.17576/jsm-2024-5306-17
A
Robust Design for the Omnibus SPRT Control Chart Under Skewed Data
Distributions
(Reka Bentuk Teguh untuk Carta Kawalan Omnibus
SPRT di Bawah Taburan Data Pencong)
JING WEI TEOH1, WEI LIN
TEOH1,2,*,
ZHI LIN CHONG3, MING HA LEE4 & KHAI WAH KHAW5
1School of Mathematical and Computer Sciences, Heriot-Watt
University Malaysia, 62200 Putrajaya, Malaysia
2International Chair in DS & XAI, International Research
Institute for Artificial Intelligence and Data Science, Dong A University, Danang, Vietnam
3Department of Electronic Engineering, Faculty of Engineering
and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
4Faculty of Engineering, Computing and Science, Swinburne
University of Technology Sarawak Campus, 93350 Kuching, Sarawak, Malaysia
5School of Management, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia
Received: 18 December 2023/Accepted: 23 May 2024
Abstract
Control charts are widely used in
manufacturing industries to ensure that production levels are stable and
satisfactory. Recently, the omnibus sequential probability ratio test (OSPRT)
control chart was developed for the purpose of monitoring the mean and variability
of a process simultaneously. As the OSPRT chart was proposed for the first time
in literature, its development relied entirely on the assumption that data
follow the Normal distribution. Nonetheless, researchers are frequently
reminded that the quality characteristics of manufacturing processes do not
necessarily follow the Normal distribution, e.g., strengths of glass fibres,
and lifetimes of products. In this paper, we investigate the extent to which
the performances of the OSPRT chart designed for the Normal model deteriorate,
in situations where the data distributions are Gamma and Lognormal. Results
show that the in-control average run length (ARL) and standard deviation of the
run length of the OSPRT chart designed for the Normal distribution deteriorate
rapidly as skewness increases. To address this issue, we propose a robust
design for the OSPRT chart by adjusting its control limits, known as the
skewness correction method. It is shown that the skewness-corrected OSPRT chart
enjoys a guaranteed in-control ARL, with a justifiable degradation in its
out-of-control performances. Besides, we also show some insights into selecting
the charting parameters for the skewness-corrected OSPRT chart in order to
achieve an optimum out-of-control ARL performance over various shift sizes. The
paper wraps up with an illustrative example of the skewness-corrected OSPRT
chart for monitoring the weights of radial tyres.
Keywords: Average run length; joint
monitoring control chart; sequential probability ratio test; skewed
distributions; statistical process control
Abstrak
Carta kawalan telah digunakan secara meluas dalam sektor pembuatan untuk memastikan bahawa tahap pengeluaran adalah stabil dan memuaskan. Baru-baru ini, carta kawalan berdasarkan ujian nisbah kebarangkalian berjujukan (OSPRT) telah direka untuk tujuan memantau min dan variabiliti sesuatu proses industri secara serentak. Oleh sebab carta OSPRT baharu diusulkan, rekaannya bergantung sepenuhnya pada andaian bahawa data mengikuti taburan Normal. Walau bagaimanapun,
para penyelidik sering diingatkan bahawa ciri mutu dalam proses pembuatan tidak semestinya mengikuti taburan Normal, seperti kekuatan serat kaca dan hayat produk. Dalam makalah ini, kami mengkaji sejauh mana prestasi carta OSPRT yang direka untuk taburan Normal merosot, dalam situasi yang mana taburan data adalah Gamma dan Lognormal. Hasil kajian menunjukkan bahawa purata panjang larian (ARL) dan sisihan piawai panjang larian carta OSPRT bagi kes terkawal merosot dengan laju apabila darjah pencongan meningkat. Untuk menyelesaikan masalah ini, kami membina reka bentuk yang teguh untuk carta
OSPRT dengan mengubahsuaikan had kawalan, dikenali sebagai kaedah pembetulan pencongan. Carta OSPRT berdasarkan pembetulan pencongan didapati menghasilkan ARL terkawal yang terjamin, dan prestasinya dalam kes tidak terkawal juga kurang dijejaskan. Selain itu, kami memberikan beberapa garis panduan untuk memilih parameter carta OSPRT yang sesuai bagi mencapai prestasi ARL tidak terkawal yang optimum untuk pelbagai magnitud anjakan. Makalah ini diakhiri dengan contoh aplikasi carta OSPRT berdasarkan pembetulan pencongan untuk memantau berat tayar radial.
Kata kunci:
Carta kawalan pemantauan serentak; kawalan proses statistik; purata panjang larian; taburan pencong; ujian nisbah kebarangkalian berjujukan
REFERENCES
Abd Razak, N., Zubairi,
Y.Z. & Yunus, R.M. 2014. Imputing missing values
in modelling the PM10 concentrations. Sains Malaysiana 43(10): 1599-1607.
Abu-Shawiesh,
M.O. & Abdullah, M.B. 2001. A modified nonparametric univariate control
chart for location based on the trimmed mean. Sains Malaysiana 30(1): 87-106.
Chowdhury, S., Mukherjee, A. & Chakraborti, S. 2015. Distribution-free phase II CUSUM
control chart for joint monitoring of location and scale. Quality and Reliability Engineering International 31(1): 135-151.
Dakhn, L.N.B., Bakar, M.A.A. & Ibrahim, K. 2023. Bayesian
estimation of time to failure distributions based on skew normal degradation
model: An application to GaAs laser degradation data. Sains Malaysiana 52(2): 641-653.
Diaz Pulido, A.J., Cordero Franco,
A.E. & Tercero Gómez, V.G. 2023. A
distribution-free control chart for joint monitoring of location and scale in
finite horizon productions. Computational
Statistics https://doi.org/10.1007/s00180-023-01361-5
Farouk, M., Aziz, N. & Zain, Z.
2020. The application of lognormal distribution on the new two-sided group
chain sampling plan. Sains Malaysiana 49(5): 1145-1152.
Godase, D.G., Mahadik, S.B. & Rakitzis, A.C. 2022. The SPRT control charts for the
Maxwell distribution. Quality and
Reliability Engineering International 38(4): 1713-1728.
Haq, A., Brown, J. & Moltchanova,
E. 2015. An improved maximum exponentially weighted moving average control
chart for monitoring process mean and variability. Quality and Reliability Engineering International 31(2): 265-290.
Ho, Y.C., Kao, S.C. & Chou, C.F. 2021. Robustness of
dispersion control charts in skewed distributions. International Journal of Industrial Engineering 28(4): 372-389.
Hossain, M.P., Omar, M.H., Riaz, M. & Arafat, S.Y. 2022. On designing a new
control chart for Rayleigh distributed processes with an application to monitor
glass fiber strength. Communications in Statistics-Simulation and Computation 51(6):
3168-3184.
Hou, S. & Yu, K. 2021. A non-parametric CUSUM control chart
for process distribution change detection and change type diagnosis. International Journal of Production Research 59(4): 1166-1186.
Huberts, L.C., Schoonhoven, M., Goedhart,
R., Diko, M.D. & Does, R.J. 2018. The performance
of control charts for large non-normally distributed datasets. Quality and Reliability Engineering
International 34(6): 979-996.
Khoo, M.B.C. 2004. An extension for the univariate exponentially
weighted moving average control chart. MATEMATIKA 20(1): 43-48.
Lee, P.H., Torng,
C.C., Lin, C.H. & Chou, C.Y. 2022. Control chart pattern recognition using
spectral clustering technique and support vector machine under gamma
distribution. Computers & Industrial
Engineering 171(9): 108437.
Li, S.Y., Tang, L.C. & Ng, S.H.
2010. Nonparametric CUSUM and EWMA control charts for detecting mean shifts. Journal of Quality Technology 42(2):
209-226.
Mahadik, S.B. & Godase, D.G. 2023.
The SPRT sign chart for process location. Communications
in Statistics-Theory and Methods 52(7): 2276-2290.
Mehmood, R., Lee, M.H., Afzel, A.,
Bashir, S. & Riaz, M. 2020. Generalized skewness
correction structure of X̅ control chart for unknown process parameters and skewed probability
distributions. Journal of Statistical
Computation and Simulation 90(8): 1349-1372.
Montgomery, D.C. 2019. Introduction to Statistical Quality Control.
8th ed. New York: John Wiley & Sons.
Nawaz, M.S., Azam,
M. & Aslam, M. 2021. EWMA and DEWMA repetitive control charts under
non-normal processes. Journal of Applied
Statistics 48(1): 4-40.
Noorossana, R., Fathizadan, S. & Nayebpour, M.R. 2016. EWMA control chart performance with
estimated parameters under non-normality. Quality
and Reliability Engineering International 32(5): 1637-1654.
Qiu, P. 2018. Some perspectives on nonparametric statistical
process control. Journal of Quality
Technology 50(1): 49-65.
Riaz, M., Mehmood, R., Iqbal, M.R.
& Abbasi, S.A. 2016. On efficient skewness
correction charts under contamination and non-normality. Quality and Reliability Engineering International 32(3): 837-854.
Sabahno, H., Amiri, A. & Castagliola, P. 2021. A new adaptive control chart for the
simultaneous monitoring of the mean and variability of multivariate normal
processes. Computers & Industrial
Engineering 151(1): 106524.
Stoumbos, Z.G. & Reynolds Jr., M.R. 1997. Control charts
applying a sequential test at fixed sampling intervals. Journal of Quality Technology 29(1): 21-40.
Teh, S.Y., Khoo, M.B.C., Ong, K.H., Soh, K.L. & Teoh, W.L. 2015. A study on the S2-EWMA chart for monitoring
the process variance based on the MRL performance. Sains Malaysiana 44(7): 1067-1075.
Teoh, J.W., Teoh, W.L., Khoo, M.B.C., Celano, G. &
Chong, Z.L. 2023. Optimal designs of the omnibus SPRT control chart for joint
monitoring of process mean and dispersion. International
Journal of Production Research 62(12): 4202-4225.
Zwillinger, D., & Kokoska, S. 1999. CRC Standard Probability and Statistics
Tables and Formulae. Boca Raton: CRC Press.
*Corresponding author; email:
wei_lin.teoh@hw.ac.uk
|